On Counting Perfect Matchings in General Graphs

نویسندگان

  • Daniel Stefankovic
  • Eric Vigoda
  • John Wilmes
چکیده

Counting perfect matchings has played a central role in the theory of counting problems. The permanent, corresponding to bipartite graphs, was shown to be #P-complete to compute exactly by Valiant (1979), and a fully polynomial randomized approximation scheme (FPRAS) was presented by Jerrum, Sinclair, and Vigoda (2004) using a Markov chain Monte Carlo (MCMC) approach. However, it has remained an open question whether there exists an FPRAS for counting perfect matchings in general graphs. In fact, it was unresolved whether the same Markov chain defined by JSV is rapidly mixing in general. In this paper, we show that it is not. We prove torpid mixing for any weighting scheme on hole patterns in the JSV chain. As a first step toward overcoming this obstacle, we introduce a new algorithm for counting matchings based on the Gallai–Edmonds decomposition of a graph, and give an FPRAS for counting matchings in graphs that are sufficiently close to bipartite. In particular, we obtain a fixed-parameter tractable algorithm for counting matchings in general graphs, parameterized by the greatest “order” of a factor-critical subgraph.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximately Counting Perfect and General Matchings in Bipartite and General Graphs

Approximately Counting Perfect And General Matchings in Bipartite and General Graphs

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Counting Matchings with k Unmatched Vertices in Planar Graphs

We consider the problem of counting matchings in planar graphs. While perfect matchings in planar graphs can be counted by a classical polynomial-time algorithm [26, 33, 27], the problem of counting all matchings (possibly containing unmatched vertices, also known as defects) is known to be #P-complete on planar graphs [23]. To interpolate between the hard case of counting matchings and the eas...

متن کامل

Matchings in Graphs

We know that counting perfect matchings is polynomial time when we restrict ourselves to the class of planar graphs. Generally speaking, the decision and search versions of a problem turn out to be “easier” than the counting question. For example, the problem of determining if a perfect matching exists, and finding one when it does, is polynomial time in general graphs, while the question of co...

متن کامل

Counting perfect matchings in graphs that exclude a single-crossing minor

A graph H is single-crossing if it can be drawn in the plane with at most one crossing. For any single-crossing graph H, we give an O(n4) time algorithm for counting perfect matchings in graphs excluding H as a minor. The runtime can be lowered to O(n1.5) when G excludes K5 or K3,3 as a minor. This is the first generalization of an algorithm for counting perfect matchings in K3,3free graphs (Li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1712.07504  شماره 

صفحات  -

تاریخ انتشار 2017